Fuyye Serisi ve Görüntüden Ses Çıkarmak

Fourier serisi, tekrar eden bir eğriyi sinüs eğrilerinin toplamı olarak ifade etmektir. Sinüs dalgalarının toplamı şeklinde yazmanın diğer anlamı “hangi frekanstaki dalgadan ne kadar var” anlamına geldiğinden mühendislikte, fizikte, matematikte çok yaygın kullanılır. Altında yatan temel fikir, sinüs ve kosinüs fonksiyonlarının birbirine dik olmasıdır, sanki birbirlerine dik vektörler gibi.

\(\displaystyle{\frac{1}{\pi}\int \limits_{-\pi}^{\pi} {\color{black}\sin({\color{red}n} x)}{\color{black} \sin({\color{blue}m} x)} dx = \begin{cases} 1, & {\color{red}n} = {\color{blue}m} \\ 0, & {\color{red}n} \neq {\color{blue}m}\end{cases}}\)

\(\displaystyle{\frac{1}{\pi}\int \limits_{-\pi}^{\pi} {\color{black}\cos({\color{red}n} x)}{\color{black} \cos({\color{blue}m} x)} dx = \begin{cases} 1, & {\color{red}n} = {\color{blue}m} \\ 0, & {\color{red}n} \neq {\color{blue}m}\end{cases}}\)

\(\displaystyle{\frac{1}{\pi}\int \limits_{-\pi}^{\pi} {\color{red}\sin({\color{red}n} x)}{\color{blue} \cos({\color{blue}m} x)} dx =0}\)

Hatırlatma, iki birim vektör birbirine dik ise aynı sonucu verecekler.

\({\bf \hat{{\color{red}e}}}_{\color{red}i} \cdot {\bf \hat{{\color{blue}e}}}_{\color{blue}j} = \begin{cases} 1, & {\color{red}i} ={\color{blue} j} \\ 0,&  {\color{red}i} \neq {\color{blue}j} \end{cases}\)

Joseph Fourier

Bu sonucu ilk Euler fark ettiği halde, Fourier bunun önemini anlayıp dalgaların analizinde çok önemli olduğunu gösterdiğinden onun ismi ile anılır. Tanımı (daha bir çok formu var, bu Fourier’in bulduğu şekli);

\(\displaystyle{f(x) = \frac{a_0}{2} + \sum \limits_{n = 1}^N \left[ a_n {\color{red} \sin(n x)} + b_n {\color{blue}\cos(nx)}\right]},\)

\(f(x)\) seriye açmaya çalıştığımız periyodik bir fonksiyon \(x \in [-\pi, \pi]\), \(a_0\) bir sabit,

\(a_0 = \displaystyle{\frac{1}{\pi} \int \limits_{-\pi}^{\pi} f(x) dx }\)

ve \(a_n\) ve \(b_n\) şöyle tanımlanmışlar:

\(a_n = \displaystyle{\frac{1}{\pi} \int \limits_{-\pi}^{\pi} f(x) {\color{blue} \cos(nx) }dx },\)

\(b_n = \displaystyle{\frac{1}{\pi} \int \limits_{-\pi}^{\pi} f(x) {\color{red}\sin(nx) }dx }.\)

Bir kaç basit fonksiyonun Fourier dönüşümünü göstermek istiyorum. Çünkü çok eğlenceli (ᵔᴥᵔ)

İlk fonksiyonumuz +1 ile -1 arasında gidip gelen sinyal:

+1 ve -1 arasında gidip gelen basit sinyal. Bunu şimdi sinüslerin toplamı şeklinde yazmaya çalışacağız. Ne kadar çok terim eklersek o kadar iyi.

Bunu şimdi Fourier serisi şeklinde yazmaya çalışıyoruz. Her bir sinüs eğrisinin sadece bir frekansı var. Hangi frekanslardan ne kadar var onu bulmaya çalışıyoruz. Fourier serisinin sonucunu yazıyorum:

\(f(x) = \displaystyle{ \sum \limits_{n = 1,3,5,7…}^{\infty} \left(\frac{4}{n \pi}\right)\sin\left(\frac{n \pi x}{L}\right)}\)

\(L\), bu \(f(x)\)’in periyodu, bu örnek için \(2\pi\). Aşağıdaki animasyonlarda \(n = 1\)’den \(n = 3,5,7,9,11,13,15\)’e kadar terimleri alarak Fourier serisini göstereceğim. 

Nasıl, süper değil mi? (。◕‿◕。) Sinüs eğrisi bir çember etrafında dönen bir topun gölgesinin aldığı yol olarak düşünülebilir. Bu “kare sinyal” eğrisinde daha fazla terim eklemek, daha küçük yarıçaplı çemberleri, önceki çember etrafında daha hızlı döndürmek demek. Bu dönen çemberlerin frekansları da tek sayı olarak artıyor (hesabı size bırakıyorum). Daha fazla çember ekledikçe (daha fazla n ekledikçe) başlangıçtaki fonksiyonumuza (yeşil eğri) daha fazla yaklaşacağız. Ayrıca, arkaya transparan olarak eklediğim eğrileri fark etmişsinizdir. Bu eğriler de cycloid eğrileri! (başka bir yazımda cycloid eğrilerini anlatmıştım).

Daha fazla terim ekleyerek fonksiyonun kendisine yaklaşmayı şöyle gösterebilirim: \(n = 240\)’a kadar olan terimleri eklersek nasıl görünür?

Devam, şimdi de şöyle “testere ucu” şeklinde bir sinyal alalım ve onu Fourier serisine açalım.

“Testere ucu” sinyali.

Bu fonksiyonu Fourier serisine açtığımızda şu sonuca ulaşıyoruz:

\(f(x) = \displaystyle{\frac{1}{2}} -\displaystyle{  \sum \limits_{n = 1}^{\infty}\left( \frac{1}{n \pi}\right)\sin\left(\frac{n \pi x}{L}\right)}\)

Tekrar, ne kadar terim eklersek bu fonksiyona o kadar daha iyi yaklaşıyoruz. Aşağıdaki animasyonlarda \(n = 1\)’den \(n = 2,3,4,5,6,7,8\)’e kadar olan terimleri ekledim.

Transparan eğri tekrar bir cycloid eğrisi!

Son olarak, üçgen şekilli bir dalgayı Fourier serisine açacağım, fakat bu öncekiler kadar eğlenceli değil. Bahsi geçen “üçgen dalga” şu:

Ucgen dalga.

Fourier dönüşümünü şöyle buldum:

\(f(x) = \displaystyle{  \sum \limits_{n = 1,3,5,7,…}^{\infty} \left(\frac{8}{\pi^2} \frac{(-1)^{\frac{(n-1)}{2}}}{n^2}\right)\sin\left(\frac{n \pi x}{L}\right)}\)

Daha fazla terim ekledikçe çemberler çok hızlı küçülüyorlar. Öncekiler gibi güzel görünmüyorlar. Olsun, ben ilk üç terimin \(n = 1,3,5\) animasyonlarını ekliyorum:

Peki, bu bilgiyi nerede kullanacağız? Çok yerde. Mühendislikte ve temel bilimlerde dört işlem gibi bir şey Fourier analizi. Mesela, elinizde gürültü gibi bir ses dalgası var. Bunu ayrıştırmak istiyorsunuz. Hop, hemen Fuyye amca yetişti yardımınıza. Hangi frekanstan ne kadar dalga olduğunu söyledi.

Gurultu ve Fourier analizi.

Yukarıdaki görselde, yukarıdaki sesin Fourier dönüşümünü alıyorsunuz ve size bir frekanstan (1 Hz) daha fazla oranda dalga olduğunu söylüyor.

Bunun görüntü işlemede, ses işlemlerinde çok güzel kullanımları var. Burada çok ilginç bir kullanımını göstermek istiyorum.

Bu çalışmada, çok sofistike bir Fourier analizi kullanılarak bir videodan ses çıkarılabiliyor. Yani, komşunuzun salonundaki çiçeği kamera ile sessiz olarak görüntülüyorsunuz, geliyorsunuz ve komşunuzun sizin arkanızdan çevirdiği dedikoduları dinleyebiliyorsunuz.

Yazi ve animasyonlar: Bilgecan Dede

Fuyye Serisi ve Görüntüden Ses Çıkarmak” için bir yorum

  • 14 Mart 2017 tarihinde, saat 09:43
    Permalink

    Harika anlatım. Özellikle animasyonları bu denli anlatımı tamamlayıcı şekilde kullanmanız takdire şayan. Bilimle kalın.

    Yanıtla

Bir cevap yazın

E-posta hesabınız yayımlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir

This site uses Akismet to reduce spam. Learn how your comment data is processed.

316Shares